首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   1篇
  国内免费   3篇
废物处理   8篇
环保管理   10篇
综合类   6篇
基础理论   23篇
污染及防治   33篇
评价与监测   10篇
社会与环境   1篇
灾害及防治   1篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   1篇
  2008年   12篇
  2007年   6篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1994年   1篇
排序方式: 共有92条查询结果,搜索用时 234 毫秒
51.

Bedrock groundwaters in Geumsan County, Korea, were surveyed to investigate the distribution and geochemical behaviors of arsenic and fluoride, mobilized through geogenic processes. The concentrations were enriched up to 113 μg/L for arsenic and 7.54 mg/L for fluoride, and 16% of 150 samples exceeded World Health Organization drinking water guidelines for each element. Simple Ca-HCO3 groundwater types and positive correlations with pH, Ca, SO4, and HCO3 were characteristics of high (>10 μg/L) As groundwaters. The oxidation reaction of sulfide minerals in metasedimentary rocks and locally mineralized zones seems to be ultimately responsible for the existence of arsenic in groundwater. Desorption process under high pH conditions may also control the arsenic mobility in the study area. High (>1.5 mg/L) F groundwaters were found in the Na-HCO3 type and with greater depth. Fluoride seemed to be enriched by deep groundwater interaction with granitic rocks, and continuous supply to shallow Ca-HCO3-type groundwater kept the concentration high. In the study area, drinking water management should include periodic As and F monitoring in groundwater.

  相似文献   
52.
ABSTRACT: Management of a regional ground water system to mitigate drought problems at the multi‐layered aquifer system in Collier County, Florida, is the main topic. This paper developed a feedforward control system that consists of system and control equations. The system equation, which forecasts ground water levels using the current measurements, was built based on the Kalman filter algorithm associated with a stochastic time series model. The role of the control equation is to estimate the pumping reduction rate during an anticipated drought. The control equation was built based on the empirical relationship between the change in ground water levels and the corresponding pumping requirement. The control system starts with forecasting one‐month‐ahead ground water head at each control point. The forecasted head is in turn used to calculate the deviation of ground water heads from the monthly target specified by a 2‐in‐10‐year frequency. When the forecasted water level is lower than the target, the control system computes spatially‐varied pumping reduction rates as a recommendation for ground water users. The proposed control system was tested using hypothetical droughts. The simulation result revealed that the estimated pumping reduction rates are highly variable in space, strongly supporting the idea of spatial forecasting and controlling of ground water levels as opposed to a lumped water use restriction method used previously in the model area.  相似文献   
53.
54.
Site characterization is an essential initial step in determining the feasibility of remedial alternatives at hazardous waste sites. Physicochemical and mineralogical characterization of U-contaminated soils in deeply weathered saprolite at Area 2 of the DOE Field Research Center (FRC) site, Oak Ridge, TN, was accomplished to examine the feasibility of bioremediation. Concentrations of U in soil-saprolite (up to 291 mg kg(-1) in oxalate-extractable U(o)) were closely related to low pH (ca. 4-5), high effective cation exchange capacity without Ca (64.7-83.2 cmol(c) kg(-1)), amorphous Mn content (up to 9910 mg kg(-1)), and the decreased presence of relative clay mineral contents in the bulk samples (i.e., illite 2.5-12 wt. %, average 32 wt. %). The pH of the fill material ranged from 7.0 to 10.5, whereas the pH of the saprolite ranged from 4.5 to 8. Uranium concentration was highest (about 300 mg kg(-1)) at around 6 m below land surface near the saprolite-fill interface. The pH of ground water at Area 2 tended to be between 6 and 7 with U concentrations of about 0.9 to 1.7 mg L(-1). These site specific characteristics of Area 2, which has lower U and nitrate contamination levels and more neutral ground water pH compared with FRC Areas 1 and 3 (ca. 5.5 and <4, respectively), indicate that with appropriate addition of electron donors and nutrients bioremediation of U by metal reducing microorganisms may be possible.  相似文献   
55.
56.
Chemical properties and pollution of water resources were studied in the Hunchun basin, which is located in northeast China and borders directly North Korea and Russia along the Tumen river. Water quality was characterised according to its major constituents and geological features. Ground waters could generally be grouped into (Ca+Mg)-HCO3 type and (Ca+Mg)-(SO3+Cl) type in first and the second terrace areas, respectively. The mixing of these two types depends on the local conditions, such as pumping or permeability variations.Hunchun city is a pollution source for local water resources due to its uncontrolled sewage and urban discharge. In a previous study of the southwestern part of the Hunchun basin, groundwater contamination by Fe, Mn and NO3-N was reported. In addition, this study identified Cd and F as prevailing contaminants in the water resources. Pollution of water resources by these contaminants appeared to be affected by the application of fertilisers, irrigation practice, variation of aquifer characteristics, solubility of mineral phases, and discharge of domestic sewage. Wide distribution and high levels of Cd and F in surface- and ground waters could pose significant problems if they are utilised as major water supply sources.  相似文献   
57.
Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.  相似文献   
58.
Hyun S  Ahn MY  Zimmerman AR  Kim M  Kim JG 《Chemosphere》2008,71(9):1646-1653
The hydraulic properties, such as hydraulic conductivity and water retention, of aged diesel-contaminated and bioremediated soils were examined and implications of the hydraulic properties for assessing bioremediation performance of soils were proposed. Bioremediation of diesel-contaminated soil was performed over 80 d using three treatments; (I) no nutrient added, column-packed soil, (II) nutrient added, column-packed soil, and (III) nutrient added, loosen soil. Diesel reduction in treatment I soil (control soil) was negligible while treatment III showed the greatest extent of diesel biodegradation. All treatments showed greatest rates of diesel biodegradation during the first 20 d, followed by a much retarded biodegradation rate in the remaining incubation period. Reduction of the degradation rate due to entrained diesel within inaccessible soil pores was hypothesized and tested by measuring the hydraulic properties of two column-packed soils (treatments I and II). The hydraulic conductivity of treatment II soil (nutrient added) was consistently above that of treatment I soil (no nutrient added) at pressure heads between 0 and 15 cm. In addition, the water retention of treatment II soil was greater at pressure heads <100 cm (equivalent to pore size of >30 microm), suggesting that biodegradative removal of hydrocarbons results in enhanced wettability of larger soil pores. However, water retention was not significantly different for control and biodegraded soils at pressure heads >100 cm, where smaller size soil pores were responsible for the water retention, indicating that diesel remained in smaller soil pores (e.g., <30 microm). Both incubation kinetics and hydraulic measurements suggest that hydrocarbons located in small pores with limited microbe accessibility may be recalcitrant to bioremediation.  相似文献   
59.
A stream water quality model, QUAL2Kw, was calibrated and validated for the river Bagmati of Nepal. The model represented the field data quite well with some exceptions. The influences of various water quality management strategies have on DO concentrations were examined considering: (i) pollution loads modification; (ii) flow augmentation; (iii) local oxygenation. The study showed the local oxygenation is effective in raising DO levels. The combination of wastewater modification, flow augmentation and local oxygenation is necessary to ensure minimum DO concentrations. This reasonable modeling guarantees the use of QUAL2Kw for future river water quality policy options.  相似文献   
60.
Land use is shaped by human activities. Traditional methods of measuring land uses (e.g. surveys and remote sensing techniques) often have difficulties in capturing human activities. The near-ubiquitous coverage of mobile phones opens up a new way to investigate land use through human activities. We propose to analyze land use by characterizing human activity patterns based on the aggregated call volume, and apply non-negative matrix factorization to identify fundamental behavioral classes. Using tower-based call data from Dakar, Senegal, we discover two fundamental land use patterns: commercial/business/industrial (C/B/I) and residential. Then, the land use of the reception area of each cell tower can be inferred based on the weights obtained for each basis vector. To evaluate the proposed approach, the results are compared with two points-of-interest (POI) data sets obtained from OpenStreetMap and Facebook’s Graph API. We have found that a majority of POIs like embassies, offices, and hotels are located in the predicted C/B/I areas; specifically, there is a strong positive correlation between estimated land use weights and the number of related POIs. Furthermore, we have shown analyzing 24-h call pattern matrix can track daily land use changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号